Time Limit: 10 Seconds

Memory Limit: 131072 KB


Given two sequences {A0, A1, ..., AN-1} and {B0, B1, ..., BM-1}. Defined a function called G(L, R, S) on sequence S, where G(L, R, S) = GCD(Si) (Li < R) that is the greatest common divisor of all the integers in the subsequence of S. The definition of the LCGCDS two integer sequences A and B is the maximum L that G(i, i + L, A) = G(j, j + L, B) for some (i, j) (0 ≤ i < N, 0 ≤ j < M).

You task is to calculate the length of LCGCDS and the number of LCGCDS of two given sequences A and B.

Note: Two LCGCDS are considered different if one of the two integer (i, j) is different.


There are multiple test cases. Each case begin with a line contains two integers N and M (1 ≤ N, M ≤ 100000). The second line contains N integers, A0, A1, ..., AN-1 (1 ≤ Ai ≤ 109). The third line contains M integers, B0, B1, ..., BM-1 (1 ≤ Bi ≤ 109).


One line for each case, you should output the length of LCGCDS and the number of LCGCDS, seprated by one space. If you can't find any LCGCDS, please just output "0 0" (without quotes).

Sample Input

5 3
1 1 1 1 1
1 1 1

Sample Output

3 3


The three LCGCDS are (0, 0, 3), (1, 0, 3), (2, 0, 3). The first number is i, the second number is j, and the third number is L.