Horizontally Visible Segments

Time Limit: Java: 10000 ms / Others: 10000 ms

Memory Limit: Java: 32768 KB / Others: 32768 KB


There is a number of disjoint vertical line segments in the plane. We say that two segments are horizontally visible if they can be connected by a horizontal line segment that does not have any common points with other vertical segments. Three different vertical segments are said to form a triangle of segments if each two of them are horizontally visible. How many triangles can be found in a given set of vertical segments?


Write a program which for each data set:

reads the description of a set of vertical segments,

computes the number of triangles in this set,

writes the result.


The first line of the input contains exactly one positive integer d equal to the number of data sets, 1 <= d <= 20. The data sets follow.

The first line of each data set contains exactly one integer n, 1 <= n <= 8 000, equal to the number of vertical line segments.

Each of the following n lines consists of exactly 3 nonnegative integers separated by single spaces:

yi', yi'', xi - y-coordinate of the beginning of a segment, y-coordinate of its end and its x-coordinate, respectively. The coordinates satisfy 0 <= yi' < yi'' <= 8 000, 0 <= xi <= 8 000. The segments are disjoint.


The output should consist of exactly d lines, one line for each data set. Line i should contain exactly one integer equal to the number of triangles in the i-th data set.

Sample Input

0 4 4
0 3 1
3 4 2
0 2 2
0 2 3

Sample Output





Central Europe 2001