Stan and Ollie play the game of Odd Brownie Points. Some brownie points are located in the plane, at integer coordinates. Stan plays first and places a vertical line in the plane. The line must go through a brownie point and may cross many (with the same x-coordinate). Then Ollie places a horizontal line that must cross a brownie point already crossed by the vertical line.
Those lines divide the plane into four quadrants. The quadrant containing points with arbitrarily large positive coordinates is the top-right quadrant.
The players score according to the number of brownie points in the quadrants. If a brownie point is crossed by a line, it doesn't count. Stan gets a point for each (uncrossed) brownie point in the top-right and bottom-left quadrants. Ollie gets a point for each (uncrossed) brownie point in the top-left and bottom-right quadrants.
Stan and Ollie each try to maximize his own score. When Stan plays, he considers the responses, and chooses a line which maximizes his smallest-possible score.

Input contains a number of test cases. The data of each test case appear on a sequence of input lines. The first line of each test case contains a positive odd integer 1 < n < 200000 which is the number of brownie points. Each of the following n lines contains two integers, the horizontal (x) and vertical (y) coordinates of a brownie point. No two brownie points occupy the same place. The input ends with a line containing 0 (instead of the n of a test).

提交代码