Levko loves permutations very much. A permutation of length *n* is a sequence of distinct positive integers, each is at most *n*.

Let’s assume that value *gcd*(*a*, *b*) shows the greatest common divisor of numbers *a* and *b*. Levko assumes that element *p*_{i} of permutation *p*_{1}, *p*_{2}, ... , *p*_{n} is good if *gcd*(*i*, *p*_{i}) > 1. Levko considers a permutation beautiful, if it has exactly *k* good elements. Unfortunately, he doesn’t know any beautiful permutation. Your task is to help him to find at least one of them.

In a single line print either any beautiful permutation or -1, if such permutation doesn’t exist.

If there are multiple suitable permutations, you are allowed to print any of them.

提交代码